Haworthia decipiens var. decipiens

Today’s post is the first in what is intended to become a daily posting of one or more interesting and beautiful pictures (mainly) of succulent plants. The text will be kept to a minimum, so as not to distract from the images. These post will be an addition to, not a replacement for, the usual ones.
You may also notice that I have added a photo gallery to the blog. Enjoy!
We kick off with two pictures that are identical, except for the fact that one was taken with a diffusor. That one seemingly little difference produces quite a different result. One can not really say that one picture is better than the other, but they give different information and also evoke a different feeling. When the light is harsh like in this case, it is worth taking a couple of pictures with and without a diffusor or reflector.

hawodecidec 8315#2012-11-03_lznres hawodecidec 8313#2012-11_lzn(001)res

Some Poellnitzia pictures

It keeps amazing me how sometimes you decide to do something and you end up with a totally different thing from what you had in mind. This post is a case in point.
I thought it would be a good idea to write a post on a certain aspect of plant photography that is often neglected (paralleling the subject) and went out into the garden to take some pictures to illustrate the principle. As it happened, there was a nice specimen of Poellnitzia in flower that seemed to fit the bill. Because the inflorescence in these plants is rather long and thin, even the gentle breeze that was blowing made it almost impossible to make a sharp picture. Quite a while ago I bought a gadget especially for occasions like this, where you have to stabilise something that is moving in the wind. It is called a Plamp (plant clamp) and  has a couple of other uses as well.  Although I rarely (have to) use it, it may make the difference between a good picture and a bad one (or none at all).  Have a look at http://www.tripodhead.com/products/plamp-main.cfm for more info.
Even after the inflorescence as such had now been stabilised, the individual flowers were slightly moving in the wind. This defeated the object of showing the differences in depth of field as a result of different camera angles. After the rigmarole of setting up camera, tripod and Plamp, combined with the fact that a flowering plant of this species is not a common sight, I was rather reluctant to just pack up and leave. So I decided to have another look at what was there. As usual, I started with a couple of what my friend Neil Curry, a retired filmmaker, uses to call establishing shots, showing the subject in its environment.

_DSC8538-2res
The background was nice and dark but because I did not compensate for its darkness this is how the picture turned out.

_DSC8538-a-2res
This is what it looked like after taking a second picture with one stop underexposure and some fiddling in post production. You will notice that I also removed some of the nasty light blotches in the background.

_DSC8550res
After this, I went somewhat closer up and photographed only the middle part of the inflorescence.

_DSC8547-2res
Because the tips of the flowers have a unique shape I decided to make a picture of those at natural size. The flowers are so special in fact, that a whole genus (Poellnitzia) was established to accommodate just one species (rubriflora).

_DSC8552res
The plant itself is similar in shape to species in related genera (Aloe, Astroloba, Haworthia) but the colour is rather special.

 

Machairophyllums flowering after fire

In an earlier post I referred to a fire that raged on the nearby Rooiberg about a year ago.
Approximately half a year after the fire we discovered a great number of flowering Machairophyllums in the burnt areas.
Although there are several populations on the Rooiberg, we had never found a flowering specimen before and we wondered why that was. Had we never been there in the right time of the year and of the day (the flowers open after dark) or did the plants, like so many others occurring in fynbos, need a fire to trigger flowering?
Last Sunday we decided to visit the mountain again and see if we could find out if the Machairophyllums in the not burned areas had flowered so profusely last year as well. This is easy to establish because the fruits stay on the plants for a long time. We saw a couple of hundred plants in perfect condition, but only very few with  (max. 2-3) fruits.  If you look at the accompanying pictures (taken last October), you will see how profusely the plants flower after a fire.
All in all It seems safe to say that  this species of Machairophyllum -and probably the others too- may not be totally dependent on fire to trigger flowering, but that it certainly makes an enormous difference.
When I say “this species of Machairophyllum “ you probably wonder exactly what species we are talking about here. Comparing all the information from literature, I come to the conclusion it is most probably M. albidum.  Apparently other people too have a problem deciding which is which in this genus: The Illustrated Handbook of Succulent Plants recognises 7 species but also says “The genus is under study and four or five species may only be distinguishable”.

#2012-10-23_DSC8026_lznres
This picture was taken at 6.32 PM, when there was still just enough light to use

machalbi 2012-10-23_8037_lznres
Fifteen minutes later the light had gone. so I had to use flash for this and the next two pictures

#2012-10-23_DSC8043_lznres

machalbi 2012-10-23_8034_lznres

Two interesting Euphorbias from the southern Great Karoo. Part 2: The start of a hybrid swarm?

Because this area harbours a variety of interesting succulents, we had high expectations of what we might come across. Nevertheless, the rest of the trip was rather boring. That is, till the moment George pointed out a big clump of what we both thought was Euphorbia stellispina, in a field next to the road. Finding that species in itself, would have been nice enough, but when we walked up to the plant, we discovered that it was much more special: about all the plant’s features were perfectly in between those of E. stellispina and E. heptagona.  The result was spectacular.

euphstelXenopla 2013-02-24 DSC8447res

euphstelXenopla 2013-02-24 DSC8446res
Two pictures of the purported hybrid

When we searched the immediate surroundings, we found plants of both these species, which strengthened the idea that our plant was a hybrid between the two.

euphstel 8321#2012-11-03_lznres
E. stellispina

euphheptDSC_3579_lznres
E. heptagona

To make the find even more exciting, after some looking around we came across another hybrid between the same parents.

euphstelXenopla 2013-02-24 DSC8448res(001)
More interesting than beautiful

Here the results of the mix are totally different and far less appealing. On the other hand it is exciting to witness what may be the beginning of a hybrid swarm and it would be interesting to follow the population’s behaviour over some time.

Two interesting Euphorbias from the southern Great Karoo, part 1: E. braunsii

Last month my  friend George Hatting and I decided to spend a Sunday looking for plants in the Prince Albert area. We had both been there before and discovered some interesting plants.  After a nice drive over the spectacular Swartberg Pass, we arrived in Prince Albert and took a gravel road road from there heading east. Shortly after leaving town, we stopped at a place that looked promising and found a couple of beautiful small Euphorbia’s.  They clearly were plants of E. braunsii, which is well known from the area.

euphbrau2012-10-03#024_lznres
This is how E. braunsii usually looks in the wild (well, normally without fruits, of course). Photo taken near Prince Albert on 10 Oct. 2012.

The peculiar thing was that they were in leaf, something I had never seen before and which is apparently a rare phenomenon. Digging into my literature I found no mention of the leaves, let alone a description or picture of them. The most likely explanation for this is that the leaves are short lived, as in the related (or maybe even identical) species E. rudis from Namaqualand and Namibia. Whatever is the case, I was quite chuffed to be there right on time to photograph the leaves, especially as they add an extra dimension to an already charming plant.

euphbrau 2013-02-24 DSC8422res

euphbrau 2013-02-24 DSC8427res

euphbrau 2013-02-24 DSC8437res

euphbrau 2013-02-24 DSC8429res
The four pictures above were taken on 24 Febr. 2013

Next time we will look at a natural hybrid we discovered on this same trip.

Miniature succulents, part 2

Succulent organs filled with water are quite heavy. In miniature succulents most of the body weight is near the ground, so that there is little or no need to build and maintain a strong support system. Because they are so compact, they are also far less exposed to external influences than other plants.

conoprae2010_09_3#029_lzn-1res
Plants like this Conophytum praesectum from near Pofadder are small enough to benefit from shade cast by pebbles

The fact that a great part of the plant is near to the soil has another -and rather unexpected- advantage. In the areas where succulents grow, wind is usually present and is often hot and strong. The continuous replacement of air around the plants has a dehydrating effect, so that evaporation can be extreme. Apart from this, the wind transports sand and dust, causing sand abrasion, which may damage the plants (especially seedlings) and remove hairs or wax cover.
Because of surface roughness, wind speed is zero at ground level, and wind becomes stronger with increasing height above the ground. It follows that the lower the plant, the less likely it will be to suffer from wind damage.
A drawback of being small is that smaller leaves and stems have a larger surface-area-to-volume ratio than large ones. As a result, their transpiration is relatively higher and they are more prone to heat stress. The fact that dwarf succulents have more or less spherical leaves or stems, helps to alleviate the problem. With regard to minimising evaporation, a sphere is the ideal shape, as it combines the minimum surface area with the maximum internal volume. (The surface area of a flat leaf is about 40 times bigger than that of a perfect globe with the same contents).

muirhort2011_11_20#033_lznres
In the rare Muiria hortenseae from the southern Little Karoo, the two leaves making up each body are fused almost completely, so that the flowers have to force their way out

In some cases, pairs of leaves have grown into one, so that each pair resembles a little globe. Densely packed leaves or stems can attain similar results.

craspyra2012-08-19#002_lznres
In Crassula pyramidalis the leaves fit so densely together, that it first sight the plant looks like a stem succulent rather than a leaf succulent

Water loss from the surface of the plant can further be minimised by (the plant) hiding underground. In dry periods, the plants are often completely hidden in the soil, covered with the sand and dust blown over them. Only when the bodies fill out at the beginning of the rainy period do they appear above ground again.
Experiments have shown that in Lithops the rate of water loss is about a fifth lower in plants that are embedded in the soil than in those totally exposed.
In addition, the daily variation of temperature in the leaves is reduced. This is important during the hottest part of the day, when the parts of the plant that are furthest away from the soil surface, stay cooler than those nearer the ground.
Hiding underground also has its disadvantages. Because less surface area is available, photosynthesis is much reduced, so growth is slowed down.
The famous window plants have found a way to reduce this problem. These plants occur almost exclusively in the dry winter rainfall areas of southern Africa and are found in just a few families- most commonly the vygies (Aizoaceae, several genera). Other examples are Haworthia and Bulbine.

hawotrunDSC_3584_lznres
Haworthia truncata has a limited distribution area around Calitzdorp and Oudtshoorn. It is one of a number of Haworthias with windows

bulbmese2012-08-19#073_lznres
A perfect specimen of waterglasie (Bulbine mesembryanthoides)

The classic example is Fenestraria rhopalophylla: The plants are practically stem less and have club-shaped leaves with a translucent area on top.
As only a small part of the leaves is exposed to light, photosynthesis would normally be seriously hampered. The window at the top however, combined with translucent water-storage cells deeper inside the leaf, makes it possible for light to penetrate into the leaf and reach the inside of its mantle. Here, (there) are cells that contain chlorophyll and make photosynthesis possible.
The plants grow in the mist zone on the coast of northern South Africa and southern Namibia where the leaves are drawn into the ground by thick contractile roots. Usually the plants grow in deep sand, but sometimes they are found in pockets above dolomite rocks. Although the plants are only a few centimeters across, the root system may cover up to 2 metres. The mat of fine roots just underneath the surface is able to absorb the condensation of the moisture brought in by the sea fog, which is the main source of water for these plants.
The leaves are usually flush with the sand so that they do not suffer from the strong winds that blow almost daily.

fenerhopaur2010_09_08#041_lznres
This F. rhopalophylla ssp. aurantiaca was photographed south of Port Nolloth, in close proximity to the sea

The so-called stone plants – among the smallest flowering plants in the world- have followed a slightly different route. They have very thick leaves, often with dark green dots in their leaf tops. These dots contain no pigment and may be either large single cells or a group of smaller ones. They lie just below the epidermis and serve as micro windows, which may take up to over 40% of the leaf surface. In winter, when the sunlight is weak, the non-pigmented zones help it to penetrate into the leaves.

lithloca2012-10-03#046_lznres
Lithops localis near Prince Albert, showing its many micro windows

A peculiar adaptation is shown by many members of the mesemb family (Aizoaceae), especially the dwarf ones, which are able to recycle water from old leaves to new ones.
This phenomenon was already discussed in an earlier post (Water recycling in succulents,  4th Dec. 2012), so please have a look there if you are interested.

In this article, I have tried to highlight some of the intriguing adaptations miniature succulents deploy in order to survive. Of course, these are only a few of the techniques and strategies they have in common with other succulents. But that is another story, for another day.

***

The original version of this article appeared in the most recent issue of Veld & Flora (March 2013). If you are interested in the immensely rich flora of South Africa, it is well worth visiting their website: www.botanicalsociety.org.za.

***

Since I wrote the article I acquired a new piece of software (Inspiration) which allows the user to make mind maps, concept maps, flow charts etc. in a very intuitive and easy way. I had tried out similar programs before, but never liked the results, nor the way they worked. To my mind, this program scores well on both points.

As I am currently working on a book on how succulents survive in the wild, I thought it might be helpful to use a diagram such as the one below, to make complicated processes and relations a bit clearer.
It would be great if  readers would have a critical look at this diagram and tell me if it works for them. Many thanks in advance!

Miniature succulents

Miniature succulents; masters of survival. Part 1

A few months ago I mentioned an article that I had written for “Veld & Flora” . Now that this has been published, I will share it with you here  in a slightly modified version.

***

Succulent plants come in all shapes and sizes. Some of them, like baobabs and certain cacti, are enormous, able to store great quantities of water. At the other end of the scale, we find the results of a trend towards reduction that can be seen in several unrelated families such as Aizoaceae, Asphodelaceae, Asteraceae, Crassulaceae, Euphorbiaceae and Portulacaceae. These miniature succulents are both small and compact, not taller than a few centimeters, often little branched, without visible internodes and with more or less spherical leaves or stem(s). (In case you don’t know: an internode is the part of a stem between the points where leaves or branches develop).

Sometimes the trend involves neoteny. This is a situation in which plants or animals retain juvenile or embryonic characteristics throughout their life span, but nevertheless are able to reproduce. (A famous case in the animal kingdom is the Mexican axolotl).

oophDSC_0124_lzn-1res
An interesting example in plants is the genus Oophytum, which only occurs on the Knersvlakte. It is a member of the Mitrophyllum group that only produces juvenile leaves. In effect, they are therefore perpetual seedlings.

Among succulent plant enthusiasts, miniatures are long-time favorites. This is hardly surprising, because even a small space can harbour a nice collection of them. There’s also an amazing abundance of shapes and colours, so that even without flowers there is always something to marvel over.
Last but not least, there’s great variety in their survival needs. In other words, both beginners and advanced growers will be able to find plants that fit their knowledge and ability. To grow some of these plants from seed to maturity is quite a feat, whereas others are much more amenable.
Even if you are not interested in keeping plants in captivity, there are many reasons for having a closer look at these dwarfs. In this article, we will focus on the way they cope with the challenges of their environment and make use of its opportunities.
Being small has both advantages and disadvantages, some of them evident, others much less so. Often the situation is rather complex. The solution for a problem may create a new problem, which in some cases is then (partly) remedied by another solution. Trying to understand this balancing act is an interesting exercise.
The accompanying pictures will hopefully convince you that these plants are not just interesting; they are also beautiful and visually stimulating.
The most obvious advantage of being small is that you need only little water, food and space to thrive. (Of course, the opposite is also true: when there is an abundance of these necessities, small succulents cannot compete with faster growing plants).
Because dwarf succulents can store only small amounts of water at a time, their storage organs have to be refilled at regular intervals, so the supply should be dependable. For that reason, the great majority of them occur in the Succulent Karoo, especially in Namaqualand with its predictable winter rainfall supplemented by even more reliable fog and dew.

argydela2012-03-31#006_lznres
The hygroscopic fruit of this Argyroderma delaetii is still open early in the morning, as a result of the heavy nightly dew

The Succulent Karoo is not the only winter-rainfall desert in the world. Others are the southern Atacama Desert in Chile, the northwestern part of Baja California and the southern coast of Morocco. The first two especially, support a lot of succulents, but few if any of these are miniatures. In that sense, one could say that these little gems are a Southern African “invention”
The Succulent Karoo contains the richest concentration of succulents in the world. Whereas only about 140 species of stem succulents grow here, there are about 1700 species of leaf succulents, about 700 of which are small and compact. During the growing season, which is not just moist but also cool, these miniatures profit from the warmth of the soil.

fritpulcScan123_lznres
One of the few miniature succulents occurring outside the Succulent Karoo is this beautiful Frithia pulchra from Gauteng

euphpsglob2009-06-06_DSC2075_lznres
Not many stem succulents qualify as a miniature, but this Euphorbia pseudoglobosa from the Little Karoo certainly does

Small succulents are often restricted to places where water easily runs off, like gravel plains and quartz fields. Between and under rocks and stones, rainwater is often collected, providing moisture for small plants. In addition, dew and mist condenses on rocks and the moisture accumulates at their bases and in crevices. (Apart from water, this kind of habitat often also provides shade and protection from predators).

conopellupel2012-04-03#103_lznres
This Conophytum pellucidum, photographed near Kamieskroon, looks quite happy with the little bit of extra water that collects at the foot of a rock slab

To be continued.