Euphorbia obesa

Guest column by Theo Heijnsdijk

In 1897, professor Peter MacOwan, a British botanist working in South Africa, sent a specimen of Euphorbia meloformis, known since 1774 , to the Royal Gardens in Kew near London. At least that’s what he thought. When the plant came into bloom in the succulents greenhouse in 1899, it clearly turned out to be a different species.  According to historiography, this unique plant then disappeared from the Kew collection (probably a concealing way of saying that the plant died). Happily, they had made coloured drawings of the flowering plant (fig.1). That gave enough information to Sir Joseph Dalton Hooker, Kew’s resident botanist, to go ahead with a description in 1903.

Fig. 1  The drawing in Curtis’s Botanical Magazine of the first E. obesa in the Western world shortly before it ‘disappeared from the Kew collection’ (read: died).

 

Euphorbia obesa is a dioecious species, in other words, a plant which develops only female or only male flowers. The drawing clearly shows a female plant, but in a detailed drawing ‘stamens’ are shown (no. 4 on the plate) and in the description it says: “Filaments anantherous, hirsute”, which means that the stamens are bristly hairy (hirsute) and do no  bear anther buds (anantherous).  It probably concerns rudimentary stamens that do not develop in a female cyathium.  Or would Hooker have mistaken the incised slips of the cup-shaped shell (involucrum) for stamens?

E. obesa remained very rare for some time. In 1907, Alwin Berger in his ‘Sukkulente Euphorbien,’ reported that the Kew plant up to then was the only known specimen. And in the part on the Euphorbiaceae in the ‘Flora Capensis’, N.E. Brown in 1915 reported that only female plants were known. In the Netherlands, the species was first admired in 1924 at the first Succulent Plant Exhibition in The Hague. The owner had bought the plant at the World Exhibition held at Wembley in the same year. In 1926 we find the first photo in the Dutch magazine ‘Succulenta’. Because of its rarity, E. obesa was a coveted plant at the time and people were willing  to pay large sums of money for it. As a result, the localities were literally looted once they were known.  The South African government recognized that there was a threat of extinction and to prevent that, an export ban for live plants was imposed in 1931.

The species name obesa means ‘thick’, ‘fat’, ‘swollen’. Just think of the new health issue obesity, in which the same word is incorporated. In this context, it is worth mentioning that the plant in South Africa is called vetmensie (‘little fat human’).

Another South African name is ‘klipnoors’. Klip means stone or boulder and noors is the name which in the  Jansenville area was given to the common yellow-flowered and rather thorny Euphorbias. These reminded the British of the gorse (Ulex europaeus) found in England. This then was probably corrupted by the Dutch to Noors (‘Norwegian’). The region around Jansenville is now called Noorsveld and ‘Noors’ has become a designation for Euphorbias in general. A klipnoors is therefore a Euphorbia that looks like a piece of stone.
Names in English are:  Living baseball, Eisenhower’s golf ball, Baseball plant, Sea urchin (zee-egel). This last one obviously as a reference to a sea urchin’s shell. See Fig. 2 and 3 below.


Fig. 2  Euphorbia obesa subsp. obesa, in South Africa called vetmensie (a fat person).

Fig. 3 The shell of a sea urchin

The species occurs near the town of Kendrew in the Graaff-Reinet district (on the west side of the Eastern Cape).  There the plants grow on the top and the southern slopes of low hills, between 300 and 900 meters above sea level and also on the flat parts between the hills. On these flat parts they occur in sandy soil under shrubs, but on the slopes the soil is much more stoney. The colours of the plant body match the environment so well that it is difficult to find one.
In summer, the maximum temperature is on average 26 °C and the minimum temperature 11 °C. In winter it sometimes freezes slightly. The annual rainfall is 200 to 300 mm, spread over two periods. In late spring (October – November) there is some precipitation and at the end of the summer (March – April) larger quantities are registered. Most of the rain falls during thunderstorms. Apparently, the plants are eaten by the numerous baboons and by the cattle of the farmers. The milky juice does not seem to bother these animals.

Fortunately, despite the collecting frenzy of the enthusiasts, there are still some populations left (perhaps overlooked at the time). They are now protected, sometimes even by placing a fence around them.
It is also completely unnecessary nowadays to remove these plants from nature. They are grown in large numbers and the cultivation is certainly not difficult.  It is actually incomprehensible that in 1935 it was still thought that the species could hardly be kept alive, as appears from the following fragment from the question and answer section in the October issue of ‘Succulenta’:

“For Euphorbia obesa, the ‘right’ culivation in our country has not yet been discovered. At best, one can keep this most remarkable of all Euphorbias, which only occurs in one part of the Cape Colony (Kendrew in the district of Graaff Reinet northwest of Port Elisabeth), alive for a few years. They slowly wither away in our country: there is usually no question of  them getting any bigger.”

For a long time, it was believed that the species indeed only occurs in the immediate vicinity of Kendrew, south of the town of Graaff Reinet, but apparently there are also populations north and northeast of Graaff Reinet.
Sensational was the discovery by Robert Allen Dyer in 1939 of a population of a similar plant on Mr. Stegman’s Kruidfontein farm, 19 miles west of Willowmore, on the road to Rietbron. This is at a distance of more than 100 km southwest of Kendrew and in the intermediate area no plant resembling an E. obesa has ever been found. This plant was described in 1941 by White, Dyer and Sloane as a separate species, E. symmetrica (fig.  4).

Fig. 4  E. obesa subsp. symmetrica.

The main difference with E. obesa, in addition to the geographical separation of course, is that the points from which the inflorescences originate (called flowering eyes), are different in shape. In E. obesa they are round dots from which one flowering stem (peduncle) originates, but in E. symmetrica it is an elongated transverse stripe, and this offers space for several (up to 5) flowering stems next to each other (fig. 5).  Incidentally, in E. obesa there may also be several inflorescences together, but in that case, they originate from one branched flowering stem.

Fig. 5  E. obesa subsp. symmetrica differs from ssp. obesa in that the “flowering eyes” are stripe-shaped and can thus accommodate up to 5 flower stalks (peduncles).

In addition, E. symmetrica keeps its spherical shape much longer than E. obesa.  In the long run, however, it also becomes taller than wide.
Also, in E. symmetrica the taproot is supposed to develop much more vigorously.  Later on it was also mentioned that young seedlings are spherical  in E. symmetrica and  cylindrical in E. obesa.  Gordon Rowley in 1998 found the differences too small to distinguish 2 separate species and he reduced E. symmetrica to a subspecies, E. obesa subsp. symmetrica. The original E. obesa is now called E. obesa subsp. obesa.

In an article by Gerhard Marx in the magazine Cactus & Co, some more differences are mentioned: in subsp.  symmetrica the head is more sunken than in subsp.  obesa;  the colored stripe pattern on the plant body in subsp.  symmetrica (especially visible in seedlings) consists of fewer, but wider and more pronounced bands than in subsp.  obesa and under identical conditions, especially with regard to the amount of light, the colour of subsp.  obesa is more purple blue-grey and of subsp. symmetrica green to yellow-brown. Young seedlings are clearly greener in subsp.  symmetrica.

Propagation by seed works very well in E. obesa and the seedlings quickly develop into beautiful little balls. On April 29, 2008, I sowed 25 seeds of subsp.  symmetrica  (from my own plants) in 5 neat rows of 5 in a pot of 8 x 8 cm (at the top). I always sow at a temperature of 25 °C to 30 °C.  Within one week, 13 seelings had already emerged. In fig. 6 we see the pot with seedlings on May 18, so barely 3 weeks after sowing. By then the 22nd seedling had just emerged from the soil.

Fig. 6  E. obesa subsp. symmetrica seedlings 3 weeks after sowing.

In fig. 7 we see the same pot on July 13, almost 11 weeks after sowing. Now there are 23 seedlings on display. A success rate of 92%.  If the seedlings are not transplanted, sometimes a seed will germinate in the next year.  A late vocation, shall we say.

Fig. 7  E. obesa subsp. symmetrica seedlings 11 weeks after sowing.

As far as the soil is concerned, the plant is not very demanding, but a mineral composition is recommended. Water regularly in the growing period and keep dry in winter. According to the literature, temperatures down to -10 °C. are tolerated when the soil is completely dry.
Subsp.  symmetrica is perhaps a little more sensitive to cold. In its habitat it does not get as cold as at the localities of subsp.  obesa.

Over the years, a whole series of abnormalities has been reported among the countless cultivated specimens of subsp.  obesa.  Of course, cristates have been known for a long time. Usually they are grafted but this is not really necessary. One of my seedlings from 1998 changed into the cristate form from the beginning.  Fig. 8 shows part of this now 14-year-old plant which still has its own root system.

Fig. 8  A 14-year-old seedling of E. obesa subsp. obesa on its own roots.

E. obesa does not normally form side shoots, but in some specimens, shoots are produced from the base. The designation ‘forma caespitosa‘ was coined for this. Bizarre in appearance is ‘forma prolifera‘, in which a new shoot is created from every growing-point. It is very similar to the witch broom disease that occurs in some cacti.
On to deviations in flowering. Under the not so correct title “Impotence in Euphorbia obesa“, J. Mieras reports in 1978 a male plant whose stamens do not develop and in 1979 a female specimen is reported in which the pistil does not develop normally.
Male plants which become females and vice versa also occur. In addition, in 1983 P.H. den Hartog reported a plant of which all cyathia are bisexual. So, both pistil and stamens in one cyathium. In my own collection I have observed in both subspecies that there are male specimens which regularly produce bisexual cyathia and fruits thereof (fig. 9).

Fig. 9  E. obesa subsp. obesa with some bisexual cyathia.

Furthermore, there is the obesa with deformed stamens mentioned by Riet Maessen in the December issue of Succulenta 2012  (fig. 10).

Fig. 10  E. obesa subsp. obesa with monstrose male inflorescences, photo Riet Maessen.

Then there are the plants that proceed to multiple dichotomous division without this leading to the formation of a crest (cristate). These forms are  referred to as ‘forma polytomica‘. Mixed forms of polytomic and cristate growth also occur. Gordon Rowley gives these types of shapes the name “Rocky Mountain”. Unfortunately, the species was not designed to undergo such a drastic change in shape and that means that cracks will occur, resulting in ugly brown spots.
I have a few such forms in my possession, all female ones and there is a lot to experience there. To start with, the pistils are not only 3-fold but also 4-, 5- or 6-fold and after pollination with a normal obesa, this results in fruits with 3 to 6 compartments (fig.  11 and 12).

Fig. 11  A monstrose form (“Rocky Mountain”) of E. obesa subsp. obesa with 3-, 4- and 5-parted fruits.


Fig. 12  Close-up of the fruits in Fig. 11.

On one of those plants, a kind of monstrose way of flowering began to develop 2 years ago in which a still expanding lump of cyathia has arisen (fig. 13).

Fig. 13  Monstrose inflorescence in E. obesa subsp. obesa “Rocky Mountain” .


Fig. 14  On the right a seedling of E. obesa subsp. obesa with 3 seed-leaves.

This is a phenomenon that also occurs quite frequently in cacti.  Other seedlings will keep making new ribs so that after 1 year there are already about 13 instead of the usual 8.  In the second or third year, such a seedling then proceeds to dichotomous division.  In fig. 15 we see such a plant after the division is complete and fig. 16 shows such a plant at a more advanced stage.


Fig. 15  After forming about 20 ribs, this seedling of E. obesa subsp. obesa decided that it was necessary to divide dichotomously.


Fig. 16 A plant of E. obesa subsp. obesa divided dichotomously.

So all this refers to offspring of a monstrose female plant that has been pollinated with pollen from a normal male plant.  In any case, the phenomenon seems to have a hereditary component. I wonder how big the percentage of abnormal offspring is if the supplier of the pollen is also a monstrous form.

What remains to be told is the fact that E. obesa hybridises rather easily with other species and that the plants in our collections will not all be true to type.  As long ago as 1938, ’Succulenta’ contained a picture of E. obesa x submammillaris.  In addition, there is a cultivar on the market under the name of “William Denton” which is claimed to be a hybrid with E. mammillaris. Common are hybrids with E. meloformis.  Among other things, these are distinguished from the true obesa by the fact that the flowering stems, just like in E. meloformis, usually are not shed after flowering.  Hybrids with E. horrida, E. globosa and E. ferox are also known.

LITERATURE

Berger, A. (1907).  Sukkulente Euphorbien. Ulmer Verlag, Stuttgart: 102.

Brown, N.E., Hutchinson, J, Prain, D. (1915). Euphorbiaceae in Thiselton-Dyer, Flora Capensis, William Clowes and Sons, London, Vol. 5, sect. 2, part 2, p. 359.

Hartog, P. H. (1983).  De sexuele spelingen van Euphorbia obesa.  Succulenta 62 (11): 258.

Hooker, J. (1903). Curtis’ Botanical Magazine 129, tab. 7888.

Houten, van den, J.M. (1926).  Merkwaardige Euphorbias, Succulenta 8 (7/8): 100.

Killick, D. J. B. (1978).  The flowering plants of Africa.

Laren, van, A, J. (1932). Vetplanten, Verkade’s fabrieken N.V., Zaandam.

Marx, G. (2012). The South African spherical spurges, Cactus & Co 16 (2): 70 – 81.

Mieras, J.  (1978). Impotentie bij Euphorbia obesa, Succulenta 57 (7): 150.

Mieras, J.  (1979). Nogmaals Euphorbia obesa, Succulenta 58 (8): 203.

Rowley, G. (2006). Teratopia, Cactus & Co.

Sluys, van der, C. (1938).  Euphorbia obesa x Euphorbia submammillaris, Succulenta 20 (1): 11.

Thoorn, J.J.E. van de, (1935). Vragenrubriek, Succulenta 17 (10): 159.

White, A., Dyer, R., Sloane, B. (1941).  The Succulent Euphorbieae 2: 559, Appendix A: 964.

First published in Succulenta 92 (6), December 2013. Translation from the Dutch by F.N.

 

Pelargonium peltatum (rankmalva, kolsuring, ivy-leaved Pelargonium)

This species was introduced in the Netherlands as far back as 1700 and is the ancestor of the peltate-leaved cultivars. It is quite variable in the size, texture and colouring of the leaves and makes an excellent garden plant which grows easily from cuttings. In nature it is widespread from Wellington and Worcester to Kwazulu-Natal.

It is a climbing  plant with soft slender stems up to 4 m long, which trail into and through other bushes.
The leaves are 2-7 cm in diameter with peltate (shield-like) blades, which are round to 5- to 7-angled or -lobed; usually glabrous (with a smooth surface) and sometimes decorated with zonal markings.
Flowers are 4-5 cm in diameter and arranged with 2-9 per inflorescence. They have 5 purple to light pink or even whitish petals; the upper two have darker markings and are much wider than the lower three.
Flowering time is spring and summer (mainly Sept. – Jan.)

Euphorbia fasciculata (noordpol, soetvingerpol)

At first glance it is often easy to mix up this species with E. schoenlandii (see link Euphorbia schoenlandii).
This applies especially to young plants. In mature specimens the easiest way to tell them apart is by looking at the peduncles (main flower stalks): in E. schoenlandii these become sharp, woody spines, whereas in E. fasciculata this is not the case.

The plants are unbranched, glabrous, up to 30 cm tall with a 3-8 cm thick, cylindrical stem. This stem is covered with spirally arranged, large hexagonal tubercles, each with a characteristic triangular central depression.
The leaves are long and narrow (1-2.5 x 0.2-0.4 cm) and short-lived.
Plants of E. fasciculata are monoecious, which means that the flowers are either male or female, but both occur on the same plant.
The cyathia are gathered around the tip of the stem, several on each peduncle, 0.6-0.7 cm in diameter and with 4-5 green glands. They appear from June to October.

Known from less than 10 localities from the Vanrhynsdorp area southwards to Clanwilliam, the species occurs in loam, sand or quartz gravel on flats or gently sloping hills.

 

Antimima hantamensis

Plants of this species are always covered with spines, which makes them easy to recognise.  Another helpful characteristic (when you have a living plant in front of you!) is that the plants will smell of fish when damaged.

Mature plants develop into erect shrubs to 25 cm tall, with dark brown to grey internodes and  trigonous , 1-1.5 cm long leaves.
Each inflorescence has up to 18 brittle spines on the outside and in July-August may contain1-7 flowers 1-2.2 cm in diameter.
The species is locally common in open Karoo vegetation on stony shale soil from the Cederberg Mountains to Worcester, Matjiesfontein and Montagu.

Ruschia crassa

One could describe this species as a “Big brother” of the earlier discussed Ruschia grisea. It is a robust shrub to 70 cm tall with ascending branches. The leaf-pairs are fused to each other below, with the free parts usually shorter than the basal leaf sheath; the keel is decorated with a single indistinct tooth.
In late spring/early summer (Oct.-Jan.) the plants are blooming with white flowers 22 mm in diam.

The species is to be found on shale and gravel plains of the southern Great Karoo from Matjiesfontein to Prince Albert.


                    

Chasmatophyllum (Hereroa) stanleyi

At present,  the genus Chasmatophyllum contains nine species, but a proper taxonomic study would probably reduce this number. The genus name is derived from two Greek words:  chasma (open mouth) and phyllum (leaf).
C. stanleyi is a low shrub 7-9 cm tall with a stout woody rootstock and ascending branches.
The leaves are trigonous, 10-13 mm long, 3 mm wide and up to 4 mm thick, covered with little warts; the keel usually has a prominent recurved tooth below the tip and the margins sometimes have a tooth on each side.
In September -October the flowers appear; they are yellow (reddish at the tips) and 20-24 mm in diameter.
Occurring on stony to shaley slopes and flats from Laingsburg into the Karoo  and the Eastern Cape.

Euphorbia globosa

Guest column by Theo Heijnsdijk
(Translation and habitat pictures by FN)

History
In 1812 Adrian Haworth in his “Synopsis plantarum succulentarum” described a new genus in the family Euphorbiaceae: Dactylanthes, translated by himself as Finger-flower. He distinguished four species in the genus: D. patula, D. anacantha, D. tuberculata and D. hamata, characterized by the finger-like lobes of the inflorescences.
In 1823 he added a fifth species: D. globosa. In the description, he reported that he had seen the species in bloom in Kew in October of that year.

Fig. 1

In 1826, Curtis’s Botanical Magazine published a coloured plate (plate 2624, see figure 1) with a detailed description by John Sims. This time under the name Euphorbia globosa, which is now generally  recognized. The genus Dactylanthes has thus merged into the genus Euphorbia. The species D. anacantha and patula are seen as synonyms of Euphorbia tridentata by current botanists. For the other three, the specific name has remained the same.

Habitat
This distinctive plant seems to have been widely distributed in the Eastern Cape area of South Africa*, but nowadays the species is much rarer. It occurs in the area between Port Elizabeth and Uitenhage where it grows on low stony hills up to 20 km from the coast.
On the Red List of South African plants, the species has the status ‘endangered’.  According to that report, it is known from less than 5 localities. The plant is listed in Appendix 2 of CITES.

* In the famous work “The succulent Euphorbieae” (1941), by White, Dyer and Sloane, we find (among many other things) the following observation on this topic:
“E. globosa is abundant in the karoid scrub between Uitenhage and Port Elizabeth, sometimes forming uniform mats of the dwarf branch-tips in such masses that it is difficult for the passer-by not to tread on them.”

Description
It forms compact clumps up to 8 cm high and to 50 cm in diameter, consisting of globular** stem segments that seem to be connected in a rather random way.
** Hence the name globosa (= spherical).
The young shoots bear small scaly leaves which later disappear. The oldest segments are grey to almost white.
African names for the species are eierpol, knopmelkbol and langbeentjie.

A mature segment develops a thin stem that bears the inflorescence, which is supported by 3 bracts. When the inflorescence or fruit has dropped, the flowering stem often divides again into 1, 2, or 3 new stems which like the older ones may become about 8 cm long.

Fig. 2

Fig. 2 shows the scar of the dropped inflorescence, and it is also visible how 2 new stems develop alongside. At the bottom, the third one just starts. A trichotomous division I would say. In this way, a cascade of stems is created. The dried flower stalks remain on the plant.                                                                                                                                                                                                                                      White, Dyer and Sloane have the following comment on the species:“Much has been witten about E. globosa since 1826, yet its “singularly whimsical growing habit” remains as fresh a source of surprise to-day as ever. In its native surroundings the globose branches form thick mats, closely pressed to the ground. These branches are gradually drawn down almost perpendicularly underground, new branches replacing them at the surface, and these take their turn for a while at putting forth the characteristic cyathia and cymes, on peduncles which are variably very short or almost absurdly long. Under cultivation the branches are rarely drawn underground, but they pile up in a fantastic medley, each branch differing somewhat from the others in shape, globose, clavate or cylindric, so that a large potted plant looks not unlike a bowl of quaint, irregular marbles or tangled strings of misshapen large beads. Occasionally the longer peduncles produce little new branches up aloft, instead of the expected inflorescence, until of their own weight these adventitious newcomers drop over to the ground, send out rootlets and begin life on their own accord.”

Inflorescence
Here I would first like to discuss the special inflorescence of Euphorbias. What we see as a flower is in fact a whole bouquet. Each stamen is a separate male flower stripped of all non-essential parts. Only the stamen itself, ending in 2 anthers, is therefore left. In the same way, the pistil is in itself a separate female flower. Pistil and stamens grow from a kind of cup, called involucrum.  On the outside of the involucrum there are usually 4 or 5 nectar glands. All those basic flowers, together with what is around them, form what an ordinary plant enthusiast sees as ‘the flower’. But in botany, this combination of flowers is called a cyathium.

Fig. 3

In figure 3 we see a young stage of the very special inflorescence of E. globosa. In the middle you can see the pistil with the 3 stigma lobes and around it the anthers in an immature stage. The diameter of this inflorescence at that time was 10 mm.
If you look at that picture you will immediately understand why Haworth chose the name ‘Dactylanthes’ (finger-flower) for this type of plant.
The ‘fingers’ are outgrowths of the nectar glands. The nectar is secreted by the wart-like elevations. In E. globosa we usually find 3 or 4, sometimes 5 ‘fingers’ per nectar gland.

Fig. 4

In figure 4 we see an inflorescence at a much later stage. The pistil has reached its final size and the stigma with its 3 lobes sticks out between 2 fingers. The swollen ovary is clearly visible.  At the bottom left of the cup we see 2 immature anthers and at the top right a stamen with 2 ripe, pollen producing anthers. If you look closely, you can see about halfway up this stamen, at the level of the cup edge, a kind of ring around the stamen. That is the transition from flower stalk to stamen. When the stamen (= flower) has finished flowering, it drops off its flower stalk. What remains is a kind of hollow tube. In the cup we also see a number of flower stalks from which the finished stamen has already broken off. On the 3 fingers of the honey gland at the bottom right, we see a few of those broken stamens.
A peculiar thing in the photo is that at the upper nectar gland there were first 3 fingers of which the middle one has divided again halfway.
It is reported that at the ends of the flowering stems sometimes not cyathia, but small spherical sections develop. If the stems bend due to the weight of the segments and touch the soil, they will quickly take root.

In cultivation
I bought my oldest E. globosa around 1990 at a cactus market. It was probably already a slightly older plant, consisting of some larger gray-white balls, and I wondered if it had been imported. This plant has now grown into a collection of perhaps 70 stems, covered with a tangle of dried flowering branches which makes it impossible to make a nice photo of it. This plant is self-fertile. Usually, after flowering, the fruits with 3 fertile seeds -characteristic for Euphorbias- appear .

Fig. 5, a seedling of a few years old


In figure 6, we see seedlings of  5 months old in a pot.

In figure 7, photographed when the same seedlings were 4 months old, it can be seen that one of the plants in the same pot is already preparing to flower.

Euphorbia globosa requires a sunny place with not too much water. If not, the spheres lengthen, and the plant will look like the closely related E. ornithopus.(The same group also includes E. tridentata, E. polycephala, E. wilmaniae and E. planiceps).
Minimum temperature in winter 8 ºC, although in literature it is reported that the plant can withstand frost.

Finally
In a series of articles about the plants grown in the botanical garden in Geneva,  Alphonse de Candolle wrote an extensive article about E. globosa in 1836. There was a beautiful folding plate in which all parts of the plant were depicted in detail. See below. Unfortunately, the scan is slightly distorted on the left-hand side.

Literature
Buddensiek, V. (1998). Sukkulente Euphorbien; 25, 101.
Candolle, A. P. de. (1836). Septième Notice sur les Plantes rares cultivées dans le Jardin de Genève, Memoires de la Société de physique et d’histoire naturelle de Genève 7 (2): 288 – 293, fig. 5.
Haworth, A. H. (1812). Synopsis plantarum succulentarum: 132.
Haworth, A. H. (1823). Plantae rarae Succulentae; a Description of some rare Succulent Plants, The Philosophical Magazine and Journal 62: 382.
Sims, J. (1926). Euphorbia globosa, Curtis’s Botanical Magazine 53, plaat 2624.
White, A; Dyer, R.A. and Sloane, B.L. (1941). The succulent Euphorbieae (Southern Africa).

Crassula deceptor

(Guest column by Theo Heijnsdijk)

Many Crassulas are beautiful mimicry plants. This one owes its name deceptor (= impostor) to the fact that the gray-green rosettes set with small dots look like small angular stones and in their habitat in southern Namibia and Namaqualand are hidden amongst the quartz stones that occur there.
The species was found in 1897 by Alston (of Avonia alstonii fame) and described by Schönland & Baker in 1902. Schönland later changed the name to Crassula deceptrix. This suggests that he considered cheating to be a trait that suits women more than men. But the real reason was that the word Crassula is feminine, and he thought (wrongly) that the species name had to be feminine as well. Later (1974) the name change was revoked.

Crassula deceptor is variable in shape and size. In nature the rosettes are about 2.5 cm in diameter and up to about 8 cm tall. The plant in figure 1 has the same width.


Fig. 1: Crassula deceptor resembles a jagged piece of stone 

The stems divide dichotomously and form a compact cluster over time.                                                                                                               For me in the Netherlands, the plant always blooms around October. As is the case with many Crassulas, this is not a spectacular but nevertheless graceful sight. The plants form branched flowering stems which protrude well above them and produce several tiny cream-green flowers which turn brown after flowering (fig. 2).  

Fig. 2: Crassula deceptor in bloom

As for its cultivation: full sun, little water in summer and none in winter. With a less sunny location and/or a lot of water, they do not retain the compact shape. Be careful with water staying behind on the rosettes.

C. cornuta (figure 3), also described by Schönland, is nowadays considered to be synonymous with C. deceptor. Yet it clearly deviates from the standard form of the species. The leaves are longer, more pointed and much lighter in colour.


Fig. 3: C. cornuta 

For the sake of completeness, it is worth mentioning that there are also quite a few hybrids in which C. deceptor is one of the parents. I have a hybrid of C. deceptor x C. susannae (fig. 4); the diameter of this plant is just 2 cm. 


Fig. 4: C. deceptor x C. susannae 

In ‘Crassula’ by Gordon Rowley, this cross is called ‘Dorothy’. He also mentions the following  hybrids: ‘Frosty’ (C. deceptor x tecta); ‘Gandalf’ (C.deceptor x mesembryanthemopsis); ‘Moonglow’ (C. deceptor x perfoliata var. falcata); ‘Shogun’ (C. deceptor x hemisphaerica) and the multihybrid ‘Star Child’ (C. deceptor x ‘Starbust’), ‘Starbust’ being a hybrid of C. ausensis x pyramidalis.


Fig. 5: Leaves of C. ‘Frosty’ 


Fig.6: Flowers of C. ‘Frosty’


Fig. 7: C. deceptor in habitat

Literature:
B.K. Boom (1980), De Crassula’s van onze collecties, Succulenta 59 [8]: 176-179

Mia C. Karsten (1941), Zuid-Afrikaansche succulente reisherinneringen I, de botanische tuin te Stellenbosch (6), Succulenta 23 [6]: 65

Gordon Rowley (2003), Crassula, Cactus & Co

First published in Succulenta 89 [2]: febr. 2010. Translation FN.

For more habitat pictures and info, see
A jewel in the Crassula crown: C. deceptor

Crassula (Rochea) coccinea Guest column

Guest column by Theo Heijnsdijk

“The most magnificent and beautiful of all the Crassulaceae is the scarlet Rochea coccinea. Emerging from crevices or growing freely on the flat rocks, the large perennials accommodate their root system in a layer of soil only a few centimeters thick, which sits so loosely on the rock that it can be lifted off together with the plant. The fact that despite its fleshy leaves it is dependent on the moisture coming from the summer clouds is best demonstrated by the cultivation experiment in Cape Town: it only thrives there, even moved to similar locations, if it is watered at least once in a while in summer.”

This is a quote from the book ‘Das Kapland’ by Rudolf Marloth, published in 1908.

According to literature, C. coccinea grows at altitudes over 800 meters in the Southwest Cape. As distribution area, the Cape Peninsula (especially Table Mountain near Cape Town) and the area between Paarl and Bredasdorp (135 km to the southeast) are mentioned.
In reality the area is considerably larger, as evidenced by the photo taken by Bertus Spee in mid-November 2008 in Citrusdal, 125 km north of Paarl. This was at the beginning of the flowering period. In nature it is part of the so-called fynbos vegetation (Mediterranean-like vegetation).

Fig. 1  C. coccinea and an Adromischus in 2008 at the beginning of the flowering period (mid-November) in Citrusdal (Western Cape). Photo Bertus Spee.

The stems become about 40 cm high and they branch from the base. In older plants, the stems become bare and brown from below, with only the tips bearing leaves. Flowering occurs in  summer (in Europe in winter). Due to the long flower tube of about 4 cm, only butterflies can access the nectar. Back in 1925 Marloth noted that the butterfly Meneris (now Aeropetes)  tulbaghia is the main pollinator. This butterfly is called “the table mountain beauty” or “the mountain pride butterfly” in South Africa and is specialized in red flowers. It is rumoured that you will be chased by the butterfly if you wear a red cap. It is probably the only pollinator for at least 15 plant species in fynbos. Among those 15 are 3 species of the genus Cyrtanthus, which is also known to succulent lovers, and 7 of Gladiolus.

History
Like Kumara (Aloe) plicatilis discussed in an earlier post, Crassula coccinea belongs to the succulents that were in cultivation in the Netherlands as early as the late seventeenth century. It is first mentioned in a book from 1706 by Caspar Commelin about rare plants in the Hortus Medicus, the predecessor of the current Hortus Botanicus in Amsterdam. The ‘name’ that Commelin gave was ‘Cotyledon Africana frutescens flore  umbellato Coccineo’ which means something like:  bushy growing African Cotyledon with scarlet flowers in a flat-topped inflorescence. The accompanying black-and-white drawing shows a plant with flower buds about to open.

Fig. 2  Image of Crassula coccinea in Casper Commelin’s 1706 book.

In the Moninckx atlas (see also the earlier post about Kumara plicatilis) there is also a beautiful colour image. According to the University of Amsterdam, this was made somewhere between 1686 and 1706 by Maria Moninckx. Although the images clearly differ from each other, they both seem to show the same specimen.

Fig . 3  Watercolour of Crassula coccinea by Maria Moninckx (made between 1686 and 1706).

The image in the book ‘Phytanthoza iconographia’ by Johann Wilhelm Weinman from 1737 is also beautiful. Here C. coccinea is depicted together with C. perfoliata and C. tetragona. The funny thing is that a mistake was made with the Latin specific name. It says “fructescens” (bearing fruit) instead of “frutescens” (shrub-forming). Not just a clerical error, because in the German text the plant is called “Fruchtbringend”.

Fig. 4  Image of Crassula coccinea (a),  C. perfoliata (b)  and C. tetragona (c),  in Phytanthoza iconographia from 1739.

Nomenclature
As far as I can tell, the name Crassula first appears in 1732. The German botanist Johann Jakob Dillenius used it for eight succulents in his work ‘Hortus Elthamensis’. The name means something like ‘fat one’. The common name is ‘thick leaf’. Linnaeus adopted the genus name in his ‘Genera Plantarum’ in 1735 and in 1753 he already described 10 species of Crassula in his ‘Species Plantarum’ (first edition). It’s curious that he mentions Ethiopia as the place of origin for Crassula coccinea, as well as for 7 other Crassulas. Of the 2  remaining ones, C. alternifolia is only given a question mark and in the case of C. scabra, he mentions “Habitat in Africa?”.
Later on, C. coccinea was placed in the genus Rochea. A.P. de Candolle created this genus in 1802 to accommodate the Crassulas with large tubular flowers. The genus name refers to the Swiss botanist Daniel de la Roche. In 1805 the South African mycologist Christiaan Hendrik Persoon changed the genus name to Larochea, after which the Austrian Leopold Trattinnick (botanist and also mycologist) changed it into Dietrichia in 1812. Adrian Haworth in his turn created the genus Kalosanthes in 1821 to accommodate 8 Crassulas including C. coccinea.
He also reported a white-flowered variety (“floribus albis”) based on a book with drawings and descriptions of succulent plants by Richard Bradley from 1716. Unfortunately, a number of drawings in that book were incorrectly numbered and that resulted in, among other things, C. coccinea containing the text of C. tetragona. And there was talk of “small white flowers”. One wonders how well Haworth looked at his sources, as C. coccinea has the largest flowers of the entire Crassula genus.
All the above genus names have been declared invalid and it is again just Crassula.  Kalosanthes has remained as the name for one of the 20 sections within the genus Crassula. This section contains only 3 of the over 200 Crassula species. Apart from C. coccinea they are C. fascicularis (= C. odoratissima) and C. obtusa (= C. jasminea). See also fig. 5, where the species of the section are depicted.

Fig. 5  In addition to Tylecodon reticulatus, the 3 Crassulas from the current Kalosanthes section are also pictured. Way back in 1912 Marloth indicated that C. coccinea for its pollination depends on the butterfly Menera (Aeropetes) tulbaghia.

Characteristic of the plants in this section are the long tubular flowers which flare out saucer-shaped at the end. This shape is caused by the fact that the 5 petals are fused over at least half their length and have a widened end at right angles.
In South Africa, C. coccinea is called ‘klipblom’ (stone flower). Also common is the name “Red Crassula” and in older literature one may come across the name ’emperor’s crown’.

 Cultivation
C. coccinea was once a widely cultivated indoor plant. In Victorian times, the plant was loved in England for its large bright red flowers and it is one of the few succulents that has been grown commercially on a large scale . The other 2 crassulas from the Kalosanthes section were also widely grown in England at that time. C. obtusa under the name Rochea jasminea -referring to the jasmine-like white flowers and C. fascicularis under the name Rochea odoratissima because of the strong scent.
In Germany too people were involved in  growing and breeding this species. Gordon Rowley in his book ‘Crassula, A Grower’s Guide’ mentions that the famous Haage firm in Erfurt offered three cultivars in their 1857 catalogue. In 1868 there were already ten. They have all disappeared from the collections again.
Among the succulent plant lovers we don’t see C. coccinea very much anymore. Young plants are still fresh and compact, but soon they become too tall and untidy. Nevertheless, the species is still grown professionally.
It grows easily and quickly in well-drained soil. Often a mixture of two parts of leaf mould, one part clay and one part sand is recommended. In full sun, a lot of water and fertilizer is required. The plants can be  grown from seed or cuttings. Seedlings can already bloom in the first year. The plants are susceptible to the fungal disease ‘rust’ but can’t stand fungicides (pesticides against fungi). After a few years, the plants become ugly with dying leaves at the bottom and deflecting shoots. That is the time to take cuttings. In a mixture of peat and sand they will quickly root.
Cuttings can also just be put in a jar of water. Once they are growing, heading them several times is recommended. This creates compact bushy plants. Supplying a larger pot may also be needed regularly. In summer they can stay outside without problems. In winter keep them cool but do not let them dry out.

Fig. 6  Crassula coccinea flowering in cultivation. The species was massively grown in the 18th century for its large, bright red flowers.

Hybrids
In comparison to some other Crassulas, C. coccinea  has not often been used for hybridisation. Probably the oldest hybrid is C. coccinea x falcata. This is midway in appearance between the two species and was named Kalorochea langleyensis. In1898, a specimen was exhibited at the Royal Horticultural Society’s show in Chelsea. This hybrid, which according to the current rules should be called Crassula x langleyensis does not seem to be cultivated anymore.
A hybrid with C. undulata was also once produced, but has suffered the same fate and the same applies to the cross with the white-flowering C. obtusa (Rochea jasminea).

Literature
Arianoutsou-Faraggitaki, M & Groves, R, H. (2012). Plant-animal interactions in Mediterranean-type ecosystems: 137 – 147.

Candolle, A.P. de & Redouté, P.J. (1799-1837): Plantarum Historia Succulentarum, 1: 1.

Commelin, C. (1706). Horti medici amstelædamensis plantæ rariores et exoticæ ad vivum æri incisæ: 24.

Dillenius, J. (1732): Hortus Elthamensis 1: 114 – 121.

Knippels, P.J.M. (1992). The household consumption and turnover of succulents at the flower auctions, Succulenta 71 (1): 33 -38.

Linnaeus, C. (1737). Genera Plantarum: 89.

Linnaeus, C. (1753). Species Plantarum 1: 282 -283.

Marloth, R. (1908). Das Kapland, Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “VaIdivia” 1898-1899, bd.2, T3:142, 339.

Marloth, R. (1925). The Flora of South-Africa 2: 17 – 24.

Rowley, G. ( 2003): Crassula, A Grower’s Guide.

Weinmann, J.W. (1739) Phytanthoza iconographia 2: 435.

Originally published in Succulenta June 2016. Translated from the Dutch by FN.

 

 

Mitrophyllum grande

Depending on the time of the year, plants belonging to the genus Mitropyllum develop completely different leaf pairs.
During the resting period, the pairs consist of two leaves pressed together in an upright position. This cone-shaped entity is covered in a paper-thin skin, the remains of the preceding leaf pair.
At the beginning of the vegetation period, the leaf pairs start to swell, and the pressure causes the skin to rip apart. After a while, the old leaves are in a more or less horizontal position and in between them the early stage of the mitre-shaped leaves can be seen. In the next phase, the latter start showing their final shape. The original leaves now only bear the remains of the covering membrane. The mitre is still very thin but will fill out considerably in the weeks to come. Gradually the old leaf pair will shrivel and ultimately wither to dry remains. The mitre-shaped leaf has now attained the shape which the genus name refers to.

This phenomenon whereby plants possess leaves of more than one shape or size is called heterophylly.
In Mitrophyllum and related genera this means that the leaves of the hot resting period are smaller than those present at the height of the cool growing season, resulting in less loss of water.

M. grande is a shrublet with a compact centre and short-shoots from which erect long-shoots develop.
It has green to yellowish-green leaves, which in the first pairs are 6-12 x 1.5-3 mm, with tongue-shaped to triangular free parts; the second-pairs are fused for 4/5, forming an oval body 2.5-10 cm long and 1.5-3.5 cm wide.
The thick and soft internodes are 1-1.5 cm in diam.
Yellow or white flowers appear in May-July (Oct.-Dec. in the northern hemisphere) and are up to 4.5 cm in diam.

Restricted to a small area in the Richtersveld, where it occurs on S to SE slopes with quartzitic stones.

In cultivation a strict summer rest should be respected.